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COMMENT 

Invertible point transformations, Painleve analysis and 
anharmonic oscillators 
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f lnstituto de Fisica, Universidade Federal do Rio de Janeiro, 21944 llha do Fundio, 
Cidade Universitaria Rio de Janeiro, Brazil 
$ Department of Applied Mathematics and Nonlinear Studies, Rand Afrikaans University, 
PO Box 524, Johannesburg 2000, South Africa 

Received 20 November 1989 

Abstract. The techniques of an invertible point transformation and the Painleve analysis 
can be used to construct integrable ordinary differential equations. We compare both 
techniques for anharmonic oscillators. 

For nonlinear ordinary and partial differential equations the general solution usually 
cannot be given explicitly. It is desirable to have an approach to find out whether a 
given nonlinear differential equation can explicitly be solved. For ordinary differential 
equations the PainlevC analysis (see Steeb and Euler 1988 and references therein, Euler 
er al 1989) and the invertible point transformation (Leach and Mahomed 1985, Sarlet 
er a1 1987, Duarte et a1 1987, 1989) can be used to construct integrable nonlinear 
equations. 

In this comment we compare the two methods for anharmonic oscillators. 
It is well known that the anharmonic oscillator 

d‘+U”O 
d T 2  

can be solved in terms of Jacobi elliptic functions. Let U ,  = U and U, = d U/d T ;  we 
obtain the autonomous system 

with the first integral 

1 ( U l ,  u,,=ju:+;u;. (3) 
Then the solution of system ( 2 )  can be expressed in Jacobi elliptic functions 

( U , , / w )  sn(wT, i) + Ulo cn(wT, i)  dn(wT, i) 
1 + ( ul0/ v)’ sn2(wT, i)  

U,, cn(wT, i)  dn(wT, i)[l - ( Ulo/ V)’ sn’(wT, i)] 
[ I  + ( U,,/ v)* sn2(wT, i)]’ 

- ~ W U , ~ (  U,,/ v)’ sn(wT, i)[l +sn2(wT i)] 

U,( T )  = 

U’( T) = 

[ 1 + ( ul0/ v)’ sn’(wT, i)]’ 

(4) 
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where 

and 

U:, u;o E = - + + = Z ( U , ,  U,) 
2 4  

with i =a and sn, cn, dn are the Jacobi elliptic sine, cosine, and delta functions 
respectively. The initial values are Ulo = U,( T = 0) and U,, = U,( T = 0). On inspection 
we see that (1) admits the two symmetry generators 

a a a 
I-aT au dT 

S -- S*= U--T-. 

Let us first discuss the Painlevi test. Euler er a1 (1989) studied the anharmonic 
oscillator 

where f l ,  fi and f 3  are smooth functions of t with the help of the PainlevC test. We 
assume that f 3  # 0. For arbitrary functions f,, f 2 ,  and f 3  the nonlinear equation (7) 
cannot explicitly be solved. A remark is in order for applying the Painlevt test for 
non-autonomous systems. The coefficients that depend on the independent variable 
must themselves be expanded in terms oft .  If non-autonomous terms enter the equation 
at a lower order than the dominant balance the above-mentioned expansion turns out 
to be unnecessary whereas if the non-autonomous terms are at dominant balance level 
they must be expanded with respect to r.  Obviously f,, f, and do not enter the 
expansion at dominant level. 

Euler er a1 (1989) gave the condition that (7) passes the PainlevC test. The condition 
is given by the differential equation 

9f:4)f:-54f:3)ff;f:+ 18f:3)ff3’fi -36(f;’I2ff+ 192f;’(f;)’f, -78f.;’f;f3’f1 +36f;’f;f, 

+3fif3’f: - 112(f;)4+64(fi)3fif, +6(f.;)’f;f3’-72(fI)’f3’fi+9Of~f;f~ 

-27fi.f I’f:-57ff;f:f:fi +72fif:fifi - 14fjf:f:-54f;f.~-sOf;f;’fi 

+ 18f13)f:+54f;f34f1 +36(f:)*f:-36f;f:f, 

+6Of; f: f; - 36f: f2 f; + 8f.: f f = 0 (8) 

where f‘-df /dt  and f 4 ’ -  f“’=d4f/dr4. It is obvious that we cannot give the general 
solution to (8) .  Thus we discuss special cases (Euler er a1 1989). We recall these cases 
here because we discuss them in connection with the invertible point transformation. 

Case I .  Let f,( 1 )  = c I ,  f 2 ( r )  = c2,  and f,( t )  = c 3 ,  where c , ,  c2 ,  and ci are constants 
( c3  # 0). Then we obtain from condition (8)  

C:C:(2C: - 9 C 2 )  = 0. (9) 

f;=o. (10) 

Case IZ. Let f,( t )  = 0 and f,( r )  = 1. Then we find 
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The general 
integration. 

solution is given by fi( t )  = At + B, where A and B are the constants of 
Now (7)  takes the form 

d2 u 
dt2 
- + ( A +  B t ) u +  u 3  =O. 

This is a special case of the second PainlevC transcendent. The solutions have no 
branch points, and are therefore uniform functions in f (see Ince 1956, Davis 1962). 

Case III.  Let fi( t )  = 0 and f3( t )  = 1 .  Then (8) takes the form 

fl” +3f; f l  + 2 (  f ; ) 2 + y  f;( f,)’+$ f f = 0. 

This equation admits the particular solutions 

(12) 

Thus (12) admits more than one branch in the PainlevC analysis. Equation (12) does 
not pass the Painlevi test because it admits non-integer resonances (rational reson- 
ances). However, (12) passes the so-called weak PainlevC test (see Steeb and Euler 
1988 and references therein). Curiously these same particular solutions were reported 
by Moreira (1984) and Leach (1985) studying the modified Emden equation with the 
direct method for the identification of invariants. 

Case IV .  A case where f l ,  fi and f3 are non-constant and satisfy (8) is given by 

Equation (7)  together with the functions given by (14) arises in the Painlevi analysis 
of external driven anharmonic oscillators (Fournier et a1 1988). This differential 
equation can be integrated exactly in terms of elliptic functions. 

Case V. Equation (7)  together with 

occurs in the PainlevC analysis of the Lorenz model (Tabor and Weiss 1981). The 
functions f l ,  fi, and f3 satisfy (8).  Then (7)  together with the functions given by (15) 
can be solved in terms of elliptic functions as follows. Applying the transformation 
U( t )  = t”4g(t”4) to (7)  where f l ,  fi and f3 are given by (15 )  yields d2g/ds2 = 2 g 3  with 
s = t”4. 

Case VI. The equation 

d2u 2 du 1 -+- -+- u 3 = o  
dt2 t dr t (16) 

arises in the group theoretical reduction of a nonlinear wave equation. Consequently, 
we have fl  ( t )  = 2/ t, fi( t )  = 0 and f3( t )  = 1 /  f .  These functions satisfy (8).  Therefore, 
(16) passes the PainlevC test. 
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Now we ask whether the equation derived above can be found from (1) with the 
help of the invertible point transformation. Our invertible transformation is given by 

T(u( t ) ,  t )  = G ( u ( t ) ,  t )  U[T(u( t ) ,  t ) l =  F ( u ( t ) ,  t )  (17) 
where 

Since 

d U  d U d T  - d U  (--+-)=--+- d T d u  a T  a F d u  dF 
dt  - d T  d t  d T  a u  d t  a t  au dt  a t  

and 

d 2 U  d 2 U d T  d T d u  a T  d U  a2T du a2T du * a T d 2 u  a 2 T  a 2 T  du 
d t2  d T 2  d t  ( a u  dt  d t  ) dT(audt  dt  a u  ( d t )  a u  d t  a t  arau dt  

+- + - -  -+- - +--+7+-- 

a2F du d 2 F  du a F d 2 u  a2F du d 2 F  
a u a t  -+-y dt  au ( d t )  - +--+--+y (20) -- - 

a u  d t  a u a t  d t  a t  

we obtain from equation (1) 

where 

We are not able to handle this general case. We make a particular choice for F and 
G, namely 

and 

2gf- fir' 
€if 

A, =- 

(gj-j-g)u+(gf) 'u3 
A0 = 

if 
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where f= df/dt. It follows that 

where 
2gf- fir' 

fl =- if  
gf -fg 

f2 = __ 
if 

f 3  = (if ) 2 .  (27c) 
Here f and g are arbitrary functions of t. We are now able to eliminate f and g from 
system (27). We obtain 

g ( t )  = [ y d r  

fi 2 fik 7 ( f 3 ) 2  1 f 3  

3 9 ' 18f3 36 f: 6 f3 
f 2 ( t )  =-+- f2+--- - +- -. 

To summarise: equation ( 1 )  is transformed into (26) under (17) where 

with f2 satisfying equation (28c) and f i  and f3 are arbitrary functions of t. 
Let us now compare the two approaches. When we insert (28c) into (8) we find 

that ( 8 )  is satisfied identically. Here we used computer algebra. Thus the invertible 
point transformations with the special ansatz (23) are a special case of the PainlevC 
approach. Let us now look for the special cases which we discussed for the PainlevC 
approach. We find that some cases given in the PainlevC analysis cannot be found 
with the invertible point transformation. 

Case I.  Let f i (  t )  = c, , fi( t )  = c 2 .  Then we find 
3 g ( t )  = - e-'1'/3 
C1 

f ( t )  = -ec1'/3 

Consequently, the transformation 

5 
F ( u ( t ) ,  t )  = - u ( t )  e']' T( U( t ) ,  1 )  = - ecl''3 

Cl 

transforms ( 1 )  into 

3 d2u du - + c c , - + c * u + u  = o  
d t2  d t  

with 2c:  = 9c2. 
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Case ZZ. Letf,( t )  = O,&( t )  = 1 .  Then from the invertible point transformation approach 
we find f2( t )  = 0. Thus we only find a special case. By calculating the Lie symmetries 
of ( 1  1) we find that if A, B # 0 the equation has no symmetry generator. If B = 0 and 
A # 0 we find that ( 1  1 )  has the unique symmetry generator S = a / &  Therefore ( 1  1) 
cannot be obtained from (1) by applying any invertible point transformation. It can 
be shown that the equations related by an invertible point transformation have the 
same group structure. Therefore all the equations equivalent to ( 1 )  by an invertible 
point transformation must have two symmetry generators with the same Lie algebra, 
i.e. [SI ,  S,] = -S, . 

Case ZZZ. Let fi( 1 )  = 0 and f3( t )  = 1. Then 
j ,  + ;f; = 0. 

The solution is given by 
(33) 

This is a special case of (12). We mention that the particular solution f,( t )  = 3 / t  of 
equation (12) has only one symmetry generator, namely S = -ta/at + xa/ax and there- 
fore cannot be obtained from (1) by an invertible point transformation. 

Case N a n d  V. If we put f , ( t )  = at" and f 3 ( t )  = pt" we arrive at 

a fn - l  2 
18 9 

f 2 (  t )  = (6n + m )  - + - a2t2" - ( 1 +x) 5. 
When we set a =$, n = - 1  and m = -2 we find 

We find& of (14) by setting 

Case VI. The functions 

=A and f3 of (15 )  by setting 

(35) 

are not solutions of equation (28c). We could conjecture that this is related to the 
fact that we have used the special ansatz (23). That this is not so can be demonstrated 
by determining the symmetry generators of (26), with fl , fi and f3 satisfying (37). We 
only find the symmetry generator S = -2td/at +a/ax. We conclude that this case cannot 
be obtained form ( 1 )  with an invertible point transformation. 

If we want to find the first integrals for the equations discussed above we can start 
from the first integral (3). Using the transformation (23) the first integrals have the form 

for f i  satisfying (28c), and f and g given by (28a) and (286), respectively. 

Three remarks are in order. Equation (1) can be considered in the complex plane. 
Then the singularities are poles of order one. The singularities form a rectangular 
lattice. Applying the invertible point transformation and using solution (4) we can 
now study the pattern of the singularities of the transformed equation. 
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The fifty ordinary differential equations of second order of PainlevC type are just 
representatives of equivalence classes. The group under which the classification is 
done is given by 

where Q, , +*, Q3, Q4 and r$ are analytic functions of t .  
Finally we mention that for certain choices of the parameters, the PainlevC transcen- 

dents IZ- V admit one-parameter families of solutions expressible in terms of classical 
transcendental functions, such as Airy, Bessel, Weber-Hermite and Whittaker, respec- 
tively (Gromak 1978). 
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